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Abstract 

We give a formulation of quantum field theory in deSitter apace in 

a functional Schroedinger picture. With conformal coupling to gravlty 

in the scalar field action we find that we must add improvement terms at 

the functional act ion level a3 well, due to the nontrivial 

transformation properties of the wave-functional. This results in a 

Schroedinger equation built of the canonical stress-tensor. We obtain 

the Bunch-Davies vacuum wave-functional. We evaluate T* and the 

stress-tensor as matrix elements in the wave-functional and confirm with 

Pauli-Villars regularization the usual one-loop results. An arbitrary 

initial wave-functional with the appropriate short-distance behavior 

leads asymptotically to the Bunch-Davies vacuum. 

n nm~v~trrl kv tInlvrr.ittr. 9p.parrh di*9ocintlon Inc. ~tnfirr rontrm+t with the Ihitcd Statet nensrtmont al Enerav 



-2- FERMILAB-Pub-85/X7-THY 

I. Introduction 

In this paper we develop a differential functional Schroedinger 

description of quantum field theory in classical curved spacetime by 

application to deSitter space. There are a great many treatments of 

field theory in deSitter space (1-8) , but the present for matter fields 

is formally most akin to the Wheeler-Dewitt (9-11) equation for quantum 

gravitational fields. 

In an earlier paper (12,13) we constructed a general formalism with 

application to the Hawking effect (via the Rindler problem). In the 

present paper we extend the formalism to cosmological settings and 

illustrate, in the Bunch-Davies wave-functional, the calculation of the 

stress tensor (and conformal anomaly) and Cp*. This calculation is exact 

in the present formalism in the absence of interactions other than with 

the classical background gravitation. Moreover, we confirm the usual 

one-loop results in the literature (without recourse to cumbersome 

point-splitting techniques; our method employs dimensional 

regularization and Pauli-Villars subtraction conditions). 

We find that the correct Hamiltonian density is the canonical 

construction, which we refer to as the (0,O) component of the “canonical 

stress- tensor”. This is distinct from the “gravitational 

stress-tensor”, obtained by variation of the action with respect to the 

metric, in the presence of conformal coupling to gravity (14,15) . In the 

absence of conformal coupling the two constructions agree. We show how 

“tree-approximation” conformal invariance is derived in the conf ormal 

limit in d+l dimensional deSitter space. 
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The reason for the use of the "canonical" stress-tensor as opposed 

to the "gravitational" one may be traced to the nontrivial 

transformation properties of the wave-functional under conf ormal 

transformations. We study this in section II(B and C) below. We give a 

functional action from which the Schroedinger equation follows by 

extremalization. If one constructs this from the "gravitational" 

(new-improved) stress-tensor then we must add functional imprOVement 

terms to the functional action. This leads to a "new-improved" 

Schroedinger equation which is identical to that obtained directly from 

the "canonical" atreSS-tensor. 

What is the appropriate Schroedinger equation to adopt in a 

cosmological setting? The answer lies in a quantum mechanical 

generalization of the principle of equivalence. The statement that 

"freely falling test particles travel along geodesics" generalize3 to 

the quantum mechanical statement "the vacuum state evolves by the 

Hamiltonian defined in a comoving inertial coordinate system". This 

yields asymptotically (in time) a unique definition of vacuum. That is 

to say, prescribe that we (1) construct a coordinate system in which 

test particles at fixed spatial coordinates xi are inertial (e.g. 

Minkowski, global deSitter, or Kruskal coordinates have these 

properties) (2) construct the Hamiltonian in this coordinate system 

(e.g. by way of the formalism of ref.(l2)) (3) solve the Schroedinger 

equation subject to arbitrary initial conditions. This system as viewed 

by observers comoving in noninertial coordinate systems (e.g. Rindler 

coordinates, static deSitter coordinates, or Schwarzschild coordinates 

corresponding to the above mentioned inertial systems) will appear 

thermally excited and lead to the Hawking effect. 
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This prescription leads to an unambiguous vacuum State in deSitter 

space after many e-foldings. Arbitrary desitter breaking initial 

conditions after a long time relax into a “Bunch-Davies” vacuum. 

However, the asymptotically vanishing corrections are infinities 

associated with the definition of the state. We may employ 

Pauli-Villars regularization to remedy these ambiguities; one must 

assume here that the regulator fields evolve with the free physical 

fields, i.e. the subtractions are effectively COmOVing Or time 

dependent although the conditions on the masses of the Pauli-Villars 

regulators are unambiguous and invariant. The use of Pauli-Villars 

regularization, it is shown presently, leads to equivalent expressions 

for the renormalized stress-tensor and T2 expectations as obtained by 

point-splitting with Schwinger-Dewitt subtractions. 

We do not solve a deeper issue of the computability of inflationary 

models in the absence of a complete theory of quantum gravity. The 

solutions to the functional Schroedinger equation are gaussians in the 

oscillator amplitudes which define the theory. Each oscillator at time 

t=O may be labeled by its momentum, ki. At t > 0 the physical momentum 

of a” oscillator of label mOmen’Cum ki is redshifted into a(0)ki/a(t), 

where a(t) is the metric scale factor. If one presumes that the present 

vacuum is essentially free field theory on momentum scales of order MW 

(or more conservatively, of order me in QED) then in minimal inflation 

these scales were once many orders of magnitude above the Planck scale, 

though we probably wish to presume that the theory is not free-field on 

such large scales (or at least, that the phase strucure is not the same 

above Mp as below). In fact, the length scale of 1OOMpc is, prior to 

minimal inflation(16), equal to the Planck scale. Thus, all density 



-5- FERMILAB-Pub-85/37-THY 

fluctuations below that scale are expected to have been influenced by 

the physics of quantum gravity during the course of the evolution of the 

Universe. 

There is no provision in any scenario of inflationary cosmology to 

account for the relaxation of the vacuum state as modes are drawn down 

from above the Planck scale to below. Naively we might expect particle 

production at this scale given by an energy density rate of MilplanckH, 

where H is the Hubble constant. Even today this is an incredible 

10g6ergs/cm3/sec! How the vacuum gracefully passes through’the quantum 

gravity phase transition without attendant particle production is, to 

me, as great a mystery as the smallness of the cosmological constant. 

Equivalently, any fine tuning of the cosmological constant, M 4 
Planck ’ 

must also control its time derivatives, Mplanck 4H” . 
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II. Functional Schroedinger Picture 

(A) Formulation 

We begin with an invariant action defined through the Lagrangian 

density for a d+l dimensional real scalar field theory: 

s = Ed’+: jj x 
= 4 &Ad, \$~(~y$JQ - f5yL - 5 WI (1) s 

where we’ve allowed for a conformal coupling to gravity specified by 

6 In general we may choose the metric “gauge” goi=o. This is not 

necessary and in ref.(l2) the general formalism is given. We obtain 

modifications to this formalism in the presence of conformal coupling as 

discussed in II(C). With the metric gauge choice a canonical momentum 

to T may be defined collinear with the time differential by: 
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- ‘,, 
To-l\ s 1 cA+‘k/5 $Q = 13,cp 

We may construct from 3 and To a’hanonical” Hamiltonian density 

which may be viewed as the (0,O) component of the canoni Cal 

stress-tensor: 

T,; = afQa,V - &f 

= ap TlvQ - $&d-Q - r_zQ’- g(icpzl (3) 

TC is not covariantly conserved for arbitrary g, but upon 
v 

quantization 

the canonical Hamiltonian will generate the time evolution of the 

wave-functional in a manner consistent with the usual Heisenberg picture 

formulationC5) and will lead to a conformally invariant theory in tree 

approximation in the limit p’--> 0 and \ -3 (Al-l/d)/U. 

Alternatively, we could derive the “gravitational” stress-tensor by 

variation of S with respect to g 
rv 

: 
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-p = P -2 ,g’ ps/y 

= +h - -:“arv +% - ;$) - <G,, 
- k Gjr;” - c@J Gp 

(the functional derivative denoted by (d+l) is d+l-dimensional, i.e. 

6CP(x)(d+‘)/ST(y)= &d+‘(x-y)). Here GPO. is the Einstein tensor. This 

form is equivalent to that given in ref.(l) upon use of equations Of 

motion and explicit subtraction of trace. The above expression is 

traceless upon use of equations of motion. Tg 
P 

is covariantly 

conserved; indeed Tg ,J =0 defines the equations of motion of ’ t-5 cp(x,t). 

We note that in, for example, 3+1 space-time in the conformal limit, 

r”--> 0, f --> 2 , and G,,v --> 0, we recover the usual “new improved” 

stress tensor: 

T% r+ 
+ +g"q - 2 ,,,y?% - f dp"Q (4 

We see that the relationship between TC and Tg is: 
Y” r” 



-9- FERMILAB-Pub-85/37-THY 

-+ = y 
r* r” - f l-p1 Y- \ ($4 - y$;‘) 

lT& = q: >, - <Rr$Q (64 
and where the expectation is taken in a desitter invariant state (such 

as the Bunch-Davies vacuum) in which Cp" is a constant. 

In Section C we construct the Schroedinger action which follows 

upon using the (0,O) component of the gravitational stress tensor as a 

Hamiltonian density. This action does not lead to tree-approximation 

conformal invariance and is inequivalent to the canonical form. We 

attribute this to the nontrivial transformation properties of the 

wave-functional under a conformal transformation. It thus becomes 

necessary to add improvement terms to this action at the functional 

level. The result is the action constructed from the canonical 

stress-tensor. 

We must postulate an equal time commutation relation between q and 

T. This 0 is defined on a space-like hypersurface and is essentially a 

global relationship; as the separated pOint.3 approach one another we 

require that the commutator be locally covariant. Thus we demand: 
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km, ToCy\iTI = i l2i'2oo ~'~~h-~) (7) 

d ‘5 
(this follows by the fact that s (x-y)/)g\ transforms as an upper index 

id covariant Q-density time component since it is conjugate to \g\ d x or 

dto). 

We pass to Schroedinger picture by introducing a d-dimensional 

functional derivative on the spacelike hypersurface and define: 

, T,irx) = -;I I’ 3 ?I- fd)/ WA (8) 

where now the fields ‘%x) are to be regarded as time independent 

configurations which are the fundamental degrees of freedom of the 

system. 

We then pOStUlate a covariant Schroedinger equation which 

propagates the state wavefunctional, v(T,t), in the time variable t=x” 

built upon the canonical Hamiltonian: 

!-r-P = + pi ‘s;‘~~o I- ($q & - 2. (%; -qqcq 

-u_“$ -tQ$ I v - i 3 ws, tl 
9 (q,t) is the amplitude to find field configuration T(x) at time t. 

Though this equation follows from a manifestly covariant construction, 
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it describes a global object,2)((T,t), which requires a global initial 

surface boundary condition. 

Now we specialize to the case of open deSitter space with the 

metric choice: 

&* : &I’ - p+ Jx” 

In d+l dimensional desitter space we have the following quantities: 

I?. = d[h+~)H~ 

Grd z c,?" hb-A) Hz/z 

5 = CL ,,&"w,\ LA) = ;(I- i) 

We thus arrive at the functional Schroedinger equation: 

( I I u,b+) 



-12- FERMILAB-Pub-85/37-THY 

rn) 
+;$ t ~d~A-t~)H~cp'L v = C&y 

based upon eq.(9), which is conformally invariant. Generally we may 

view 9 (cp(x),t) =s a path integral from t=- CO to the surface t if we 

are careful to define the path integral on some earlier surface with 

appropriate boundary conditions. Presently it is easier to solve 

directly for the wave-functional from the Schroedinger equation (12). 
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(B) Tree Approximation Conformal Invariance 

It is interesting to inquire as to how the theory described by 

eq.(12) becomes conformally invariant. This is only “tree 

approximation” invariance since the conformal anomaly occurs in one-loop 

63s the trace of the stress-tensor (spoiling conservation of the scale 

current 1. In Schroedinger picture the conformal terms occur because the 

field configurations must be time-independent. The time derivative on 

the rhs of eq.(12) is a total derivative. If the field configurations 

acquire an overall time dependent resealing, then we reexpress the rhs 

in terms of a partial derivative with respect to time and one with 

respect to the field configurations. This leads to modifications of the 

Hamiltonian which cancel against the conformal cOupli”g term. 

To see how this goes consider the time dependent resealing Of the 

fields: 
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4 = ‘“#$)Hk\ cp * 

This is the resealing which leads to the usual conformally invariant 

action. The Schroedinger equation of eq.(12) becomes: 

p.p = ; \&-H+ - $ +QLvq’ + +&2~+- 
? 

11+) 

+ 1 J(LhA~ I-?$ Pt p = [~~-~(y)+P&)yJ 
where a/a t acts upon the explicit time dependence in y(T,t). The 

last term on the rhs follows by noting: 

h - f-&)9' &')lAt 
,,cF=o=Jp -1 

I ) 
J-1 ~&+Hf- (,g 

We transfer the second term on the rhs onto the lhs and complete the 

square with the kinetic term: 
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06) 

=. c ++ i (‘$q s%\] 2f- 
The last term on the rhs arises from the ( in the 

completion of the square; similarly we pick up the last term of the lhs 

upon squaring. 

The functional and time derivatives may be transformed by 

essentially functional gauge transformations. We define a new 

wave-functional, (Q’,t) implicitly by: 

('~')Ht Sat4 e ; (di$$) & I# +cq~ +I 
1 

and we arrive at: 
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4- (td(A+:) - &d)’ + (15d)) t\zq’Le’Lt 

(recalling that % a t acts only upon explicit time dependence in w 1. 

We see that by choosing I= (l-l/d)/4 and p 0 that we arrive at the 

manifestly conformally invariant theory: 

&Q', t(d) = ; $$'@J t(T)) 

This verifies the usual conformal invariance obtained by manipulation of 

the action in the framework of the Schroedinger picture. 
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(C) Functional Action; “New Improved” Functional Action 

The Schroedinger equation may be viewed as arising from the 

functional action: 

z = 13, A*” [ \g=+ 1; q g g + gQ%+QVj~ 
-+PL- )iR$)Yj + i ‘“&Y] 

by variation with respect to the wave-functional -9. The canonical 

stress-tensor appears implicitly in this formula, and as we’ve seen in 

Section (C) it leads to the correct tree-approximation conformal 

Why does the “gravitational” stress-tensor not generate the correct 

Schroedinger equation? These lead to identical theories in the < =0 

limit, 01‘ in the flat space limit (in which the improvement terms are 

total derivatives and have a canonical structure). 

The reason is evidently the non-trivial transformation properties 

of Y under conformal transformations. We see in eq.(17) that we must 

perform an effective “functional gauge transformation” upon Y-J to bring 

it into the form of a manifestly conformally invariant Schroedinger 

equation as in eq.(19). We may view this as the analogue of the 

transformation in eq.(lj) which brings the new improved action into a 

conformally invariant form when <=(1-l/6)/4, and p2=0. Hence, we 

expect that if we construct the functional action with the gravitational 

stress-tensor that we must allow for “functional improvement” terms. 
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Indeed, the functional action constructed with the gravitational 

stress-tensor in eq.(4) takes the form: 

- ;cpz + 2% ,oo,z - 

Here i and j are summed over the d-spatial dimensions. Thus, the 

new-improved functional action must be that in eq.(20) and we see that 

the relationship is: 

The last terms in eq.(22) represent the functional improvement necessary 

to obtain the conformally invariant Schroedinger equation in eq.(19). 

The last term of eq.(22) is generally not a surface term in curved 

spacetime and involves a functional derivative through eq.(8). 
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(D) Diagonalization of H in Momentum Space 

It is convenient to pass to momentum space (this effectively 

diagonalizes the Hamiltonian of eq.(l2)): 

6 dAk 
39(x\ = 

-;k.x 2 

&A” e sol, 

2 (cc,,) = ++k\ ; o(~ = a, 
K 

and the Schroedinger equation becomes: 

i \ g*, P+~-iy?3?, + [PV + +I + ~&&qy 

I ; $2C’L,t) 
To solve this consider the anzatz: 

y&i = VI e”p j- g+ AC01 Id- m+\j (25) 
Substitution into eq.(24) yields: 
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i i(K,tj = _ &f,&-diit + tt=eld-l)ut + ip WbP 

116) 

To solve eq.(26) it is useful to define: 

e d’4t A($+) - ‘$ 117) 

and we obtain (in the case of constant 01‘ very slowly evolving H): 

With the substitutions: 
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we find that Uk(-C) satisfies Bessel’s equation: 

T = g-p+ 

(24) 

7 

’ A’ %M + KLP +T 7 &Jrli + fi - &)&Jq =- 0 

where the index is: v = ($- u’ 
w 

The general solution for IJ is given by: 

I,& (T-) = A, kl[:‘(KT\ + B,l-l(:7(l~s~ 01) 

Clearly the particular solution is determined by the initial conditions. 

Presently in this section we shall adopt a simplifying assumption which 

is equivalent to the choice of vacuum made by Bunch and Daviesc5) in 

their Heisenberg picture analysis. We choose: Ak=O, Bk=l, whence we 

have for A(k,t): 
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A(KJ-\ = i (Hrjd p; KHr + $ \ i 1352) ” T 
which gives us immediately the momentum space representation of the 

vacuum wave-functional. We thus can compute the probability of finding 

a given field configuration in terms of the Fourier coefficients: 

q y = ?ge, d i - $ &A. ~~J,,~l;~;;k~(* ,\ 133) er”K 
(apart from overall normalization) where use has been made of the Hankel 

function Wronskian. We have not obtained here the explicit form for the 

zero-point energy (it develops an imaginary part to maintain the norm of 

the wave-functional). The real part is the (0,O) component of the 

stress tensor which we presently evaluate. 

We remark that to evaluate the stress-tensor we require the 

following simple identities which follow upon performing the (gaussian) 

functional integration in the wave-function of eq.(26): 
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2 t?e @(K,t\) 

I!&) = &++ AktMw) 
2 n,(ACW) 

= n- AHt 
slrt e i 

\-r’J’&\ HyiKr) ;‘d2” t 

+ y ey Hy\_I’:‘(tiT) + HZ’ !.p(KT\) 
+ p I#’ /-p(&) . 

1 C-b) 
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(III) Evaluation of the Stress-Tensor 

(A) Dimensionally Regularized Result 

The Schroedinger wave-functional may be used directly to evaluate 

the stress-tensor in deSitter space. We work in d space dimensions and 

have from eq.(3) the formal expressions for the canonical stress tensor 

components (we will obtain the gravitational stress-tensor below): 

+ ;c -2Ht$,& + ;(r-‘+ $Rb$ (3su,b) 

TLC z -; yAx-> + +~yqycp - g$Q.& - ; +y* 

(the Tij for i#j components vanish in a rotationally invariant state). 

where we have substituted the operator expression for the canonical 

momentum wherever it appears into eq.(3). Here V, denotes the gradient 

over the d-l dimensions orthogonal to index i. A direct evaluation of 

the expectation values of these operators in the general Schroedinger 

wave-functional of eq.(20 gives: 

4g,c > = + + uze-+ r’+ TV I-&? A0 Ii\ 3 
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/Xi‘ > = $ A?& r \ &A) 
(y?+ e\;+-, i; $V \ 

We may SubStitute eq.(34a and b) into eq.(36a and b) Here we may 

rescale the momentum, k’=kedHt, and we see that the formal time 

dependence disappears everywhere and we thus obtain: 

LTeoc 1 = & 
JV s I G)J. 

P g, (“I e/ 

+ t4’=“\4t;‘ + ly~\~‘)NA+ + (ii?+ r’ t 
+\R + gk! ) Hy l-l? \ ; 

dT;,C > = TT p &f %+\ 1 t @id4 
T;” q’ t,y 

+ $&I H;“ t\‘,‘\ t qf g:\ ) + 2 I K ) ITA z’ 
+ l-i’d’ _ 

4 
r-‘- 3 (7) l-i’:’ HZ’ , 

i 

(374 

j-b) 



-26- FERMILAB-Pub-85/37-THY 

Now the arguments of the Hankel functions are all k*H-‘. This resealing 

of momentum is a general feature of cosmological metrics. It implies 

that a momentum label k refers to a physical momentum ke -Ht at time t 

subsequent to initialization. The physical meaning of this is clear, 

but the implication for interacting theories, such as gravity at the 

Planck scale is not obvious. 

To evaluate the integrals indicated in eq.(37a and b) we made use 

of the discontinuous integral of Weber and Schafheitlin(‘71’8) to 

obtain: 

c Ad!& Kcp tlpu\ M’:‘LI(\ = I 2 (+I ..d lr 1-I r(l-p-al ryy?) ! r(~‘,r(l-f~A~r~+~~r(‘z-II~ 138) 

I p(f$+,) ~(f$J) 

In the dimensionally regulated expressions we may integrate the 

first terms of eq.(37a,b) by parts (symmetrically) and use the Bessel 

equation to obtain an expression in H(J)HL2) and a term in 

H;(1)H,!2)+HyH'(2) 
Y which cancels the second similar terms. This leaves 

the result: 
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&t’@‘(d) H’:‘(KCi’) 

Evaluating eq.(x’i) using eq.(38) yields: 

< 7,: > = Ae-L’ht L-Q + 

-a’/, @\ = TT 
I 

f(-l-~\rlltd,~)S(,,d,-,~r(\+d,*+,~ L 
c~ddr(-A(2\ f-h+ L,NY~--,) 

I-l + 

q’+ j-c) r(~- ~1 I-(%-vl r(d,x+.) 
4 fh+i\r(;-01 r(\ - hl) 

= I-l I+‘++ fI,-d~rll+~-v~r[l+$+~I 

7. Il+d~f(l-~\r(L1-~)r(~+~,j 
= e”“%.; > I40) 

We thus obtain the final dimensionally regulated result in d spatial 

dimensions: 
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3 (‘+A) r(l-~y(+-drll,+J) 

which is d&Sitter invariant with the metric (here the metric iS of 

course the deSitter metric defined through eq.(lo)). 

Similarly, we have implicitly evaluated the quantity(cp’> in the 

above analysis: 

&- = 4 g,* ;*&+, c 
= t\d-‘T-Ah r(l-Aw($ -u\r($+v) 

2 r(+*Y\r(+)r(+~) - 
(42) 

(B) Renormalization 

The formal expressions of eq.(+\) and eq.(4’L) may be subtracted 

either by the method of ref.(Z-5) or by direct application of 

Pauli-Villars regularization. Pauli-Villars regularization is a 

misnomer as the method leads both to a regularized as well as 

renormalized result in an unambiguous way. 

In using Pauli-Villars subtraction we must specify a definite 

space-time dimensionality for the scale dimensions of eq.(41,42). For 

example, if we choose to evaluate the stress-tensor in l+l space-time we 

want d=l and we must multiply the rhs of eq.(41) by the factor 

(r,.$)((l-d)/2) which fixes the scale dimensionality of the bare 

expression to be 2 (mass) . Here fi*=$$is an arbitrary mass scale 

proportional to the theory mass scale p’. This is because converting a 
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dimensionally regularized expression to a Pauli-Villars regularized 

expression cannot exploit the arbitrariness of dimensional continuation. 

Technically, if these operations are not performed, the Pauli-Villars 

subtractions are spoiled by logarithms. 

We imagine taking linear combinations of the unrenormalized 

expressions of eq.(+I) and eq.(+z) with a set of similar expressions for 

large mass regulator fields, e.g. for an operator 8 ( r-'): 

q2\‘“, 5 &YqAq> - &-4;B(IYJt!. 
iSI 

We further impose for the N regulator fields N moment conditions on the 

coefficients di: 

ir'T - ~ o(; [iiYI'jMj &,I= (1,1,..- q. (44) 
i= I 

We then define the renormalized quantity by taking the limit Mf -->oO 

in eq.(43). 

Let us exhibit the procedure in 1+1 dimensions for the 

stress-tensor. We require the large mass limit of eq.(+l) which 

requires the large argument limit of the digamma functions and the 

expansion of the radical v. First we write, in d=l- E space 

dimensions: 
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q4c> = 
2 

rJ~ $Y”[$ - ; J!w $* - 4 [yJ(+-do\* y(i+d”)) 
1 

-b Lo~lk*+ 1 
(45) 

and the large mass limit of the expression for the stress tensor in 1-C 

dimensions becomes: 

4T,:‘2 -+ aru [w>‘R)(+ -! ~?I1 +$JL[$lTj+ L!J 
a- 6v-f’ 

+ consc‘.+t (46) 1 
where 2/, is 

Taking now the linear combination with the regulator fields shows 

that the l/f singularity and arbitrary h parameter have cancelled and 

we obtain the finite, renormalized canonical stress-tensor: 
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AT:""> = <,,(r'), - g'd; L'~A:I\ 

= $ [($+k\ "?y) + ~+w~&4+~~ +qri-%)) + 21 

Similarly, applying the Pauli-Villars subtraction conditions to the 

cp2 matrix element yields for d=l: 

&- > = $- 1 &A p) - (y[lz+%) + yit-VJj] L\ (4f) 

To evaluate the gravitational stress-tensor we make use of eq.(47) 

and eq.(‘+@ to obtain: 

q? > = qc, - \R,,&e’> 
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1 +$2L~‘+~ (W(i,+cJ + 2cib.N + ;‘i (47) 7T 

which agrees with the usual result (5 1 . In the conformal limit, $ -->0 

and r?->(O) we obtain: 

cy > = <y > = gp g- I\ ISO) 

which is the familiar trace anomaly in deSitter space-time of 

dimensionality l+l 

This result establishes that our vacuum state is the correct 

representatibn of the Bunch-Davies vacuum in terms of Schroedinger 

wave-functionala. We have further verified the usu+ result3 in 3+1 

given previously in the literature. 
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IV. Implementing Physical Boundary Conditions 

In the preceding analysis we have adopted a particular solution for 

the vacuum state which technically facilitate3 our eValUatiOn of matrix 

elements and is thus identical to the choice made in the earlier 

literature(le5). Essentially, the choice that U,(t) be just H(z)(k-rr) 

associates the asymptotic phases exp(-iEt) with destruction operators. 

We:ve obtained in the present formalism results identical to the 

previous literature and the results are required to be d&Sitter 

invariant since the action of the global deSitter charges presumeably 

annihilate the state. Counterterms are generally covariant since they 

probe the short distance structure of the theory where we’ve engineered 

in local coordinate invariance. This, however, does not imply that the 

state constructed above is physically interesting. Indeed, we can 

imagine that at time t<O the Universe is actually in a Robertson-Walker 

or even Minkowskian ground state. At a subsequent t=O we switch on a 

desitter metric (this occurs naturally in a sense in inflation). Then 

we must require that the state in the deSitter phase match up with the 

vacuum from the earlier phase. We show presently that any arbitrary 

initial conditions will lead after several e-foldings to the 

Bunch-Davies vacuum. Similar conclusions are inherent in the models 

studied by Vilenkin and Ford (22) . 

Consider the quantity U,(t) as defined in eq.(28). We can impose 

at t=O the initial conditions: 
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l&(o) = /a, i-\c:)[MH-il t X,H:‘~(wr’) = 1 

By definition Uk( *)=I at t=O and the second result follows from 

eq.(Z7). Here Ao( K) is the initial width of the Schroedinger 

wave-functional. 

Solution of eq.(sl) for the coefficients, Ak and Bk yields: 

L U H~'/cKH~') + (iA, + *' T ) H’,“(KH-‘j ] 

(524) 

B3, = -g [K $‘[KCF\) + (;A, + +) ~c;i(,,$)j 

and the vacuum wave-functional width is: 
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A(K:t\ = dHt 
~‘(A&‘~rc’ti-‘)+ ‘BK l4-\‘;‘)u’ti--‘)) 

A, l4’:yu’lr’~ + ‘i3, d;‘[dI-t-‘) 
-+ $4 (53) 

r 

where k’ = kexp(-Ht). This is an unwieldy expression and involves 

cross-terms of the form ~:?kH-‘)H~~k’H-‘). To proceed we adopt an 

“inflation approximation” in which we regard exp(-Hit) as infinitesimally 

small. We thus use asymptotic forms for large arguments in H ~$()ktI-’ ) and 

we ultimately drop terms with rapid phase oscillation, e.g. 

cos(kH-‘)H;(k*H-‘). 

‘/ 
Let Ao = (k2 + m*)% for arbitrary m (this is the form appropos 

Minkowski space for m constant). Here m(k*) is a rotationally invariant 
A 

function of the three momentum k. The short distance behavior of this 

function must be constant, and m(G’) can be represented by a Laurent 

series in descending powers of ;*. In the inflationary approximation we 

have: 
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0, + $ e [ (1 t &K-I) - ii? ] Qxp [id 
7-u 

where T=kH-‘-++ . The real part of A becomes: 

[I& A[ti,+f j & Fk 
i 

K/z + 3 
L *‘&-w+ ; &t &-I l-i t 

)I(‘\ ((qL + dd’” p 7 
. d;kK’ti-‘j t-i~‘(k’,\-‘) (55) 

Curiously, if we expand in in2 we see that these correction3 are 

suppressed, occuring in order m4Hm4: 

mp *(lc$t,]-’ --j gGt 
I 

1 + g+ + @J+‘+ I\ 
. 11’: ‘(dd) H ;’ 64’P) (56) 

For large t we see that eq.(%.,) approaches the result for the 

Bunch-Davies vacuum: 
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1% Aw’j-‘+ g P-A H; 1(Ki4) &u’H-y -t 8p:c2”c) 

The term involving d2H2/8 leads to logarithmic infinities in ‘42 

and T ~. These 
r 

can be subtracted by application of the Pauli-Villars 

scheme. The initial choice of A0 is thus irrelevant for the asymptotic 

behavior of the vacuum. This establishes that the vacuum state 

asymptotically approaches the Bunch-Davies vacuum in the inflation limit 

and we recover the renormalized expressions as in eq.(4?). Moreover, by 

writing down an arbitrary initial (e.g.thermal) density matrix at t=o 

(see the explicit Schroedinger representation of ref.(l2) for the 

thermal density matrix) we find that in the inflation approximation we 

obtain a coherent density matrix which corresponds to the Bunch-Davies 

vacuum (essentially the thermal cross-terms approach zero, i.e. the 

density matrix becomes factorizeable into the product of the BD 

wavefunction and its complex conjugate). This result is remarkable and 

somewhat diminishes the problem of choice of the initial cosmological 

vacuum: all vacua lead to Bunch-Davies! Does the same hold in 

Robertson-Walker? We suspect by analogy that the answer is yes; the 

fact that we live in an approximate vacuum state may be a consequence of 

the expansion of the Universe. 
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V. Concluding Remarks 

A general feature of the vacuum state in deSitter space or any 

Robertson-Walker metric is the association of redshifting factors, 

exp(-tit), with the momentum of any mode. One can show that the physical 

momentum of an excitation of label momentum k becomes kexp(-Ht). As 

mentioned in the introduction, if at t=O we know the structure of the 

vacuum state only up to some scale of order k=MX (X is surely "Planck", 

at least), then our knowledge of the short distance behavior of the 

theory below MX becomes worse and worse as t-->Q, . 

The subtraction schemes used to renormalize T 
v 

and Cp', etc., 

always presume that regularization occurs by some large, constant (in 

time), mass scale, e.g. the Mi of the Pauli-Villars scheme. Above Mi 

we effectively suppress the zero-point fluctuations of the theory (this 

may occur in reality by way of e.g. supersymmetry). However, in 

cosmological vacua we are always replenishing modes immediately below 

Mi. If we did not replenish these modes then T,,+ would redshift like 

ordinary radiation, d exp(-4Ht). This replenishment allows constant 

Tp. But it must in reality be associated with some physical process, 

e.g. particle production, which is not accounted for in our free field 

theory (hence our previous remark about the existence of derivatives of 

the cosmological constant). 

We have not given a detailed discussion of the asymptotic behavior 

Of arbitrary initial states. We anticipate that it is straightforward 

to recover the results of Vilenkin and Ford (19) in the infra-red 

divergent limit. 
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